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Introduction 

The dynamics of infectious diseases represent one of the most ancient and rich areas of study of 

biomathematics; pathogens adapt and evolve over time, thus determining the appearance of new diseases 

or the regeneration of ancient forms of contagion which they thought were now extinct. It is clear that the 

human invasion of new ecosystems, factors such as global warming, environmental degradation, 

enhancement shifts and communications on an international scale, and changes in the economic field, have 

begun to provide more and more fertile ground for the development of new diseases.  

The ongoing COVID-19 pandemic was first confirmed to have spread to Italy on 31 January 2020, when two 

Chinese tourists in Rome tested positive for the virus. One week later an Italian man repatriated back to Italy 

from the city of Wuhan, China, was hospitalised and confirmed as the third case in Italy. (Remuzzi & Remuzzi, 

2020) (Calafiore, Novara, & Possieri, 2020) (Falco, Cioppa, Scafuri, & Tarantino, 2020) (Ren, et al., 2020) 

(Team, 2020) 

A cluster of cases was later detected, starting with 16 confirmed cases in Lombardy on 21 February, and 60 

additional cases and the first deaths on 22 February. By the beginning of March, the virus had spread to all 

regions of Italy. On 31 January, the Italian government suspended all flights to and from China and declared 

a state of emergency. In February, eleven municipalities in northern Italy were identified as the centres of 

the two main Italian clusters and placed under quarantine. The majority of positive cases in other regions 

traced back to these two clusters. 

On 8 March 2020, Italian Prime Minister expanded the quarantine to all of Lombardy and 14 other northern 

provinces, and on the following day to all of Italy, placing more than 60 million people in quarantine. On 11 

March 2020, Conte prohibited nearly all commercial activity except for supermarkets and pharmacies. On 21 

March, the Italian government closed all non-essential businesses and industries, and restricted movement 

of people. (Galeazzi, et al., 2020) (Gollust, Nagler, & Fowler, 2020) (Gupta, Raghuwanshi, & Chanda, 2020) 

(Guzzi, Tradigo, & Veltri, 2020) 

It has been hypothesized that in order to fully understand this complex phenomenon, the contribution of 

different and multiple disciplines was necessary: here mathematical models were extremely suitable for this 

purpose and began to play an incredibly significant role. The main goal of these studies resides in the attempt 

                                                           
1 Head of R&D, QBT sagl – Professor, UCM Higher Education Institution – Dir. ScienceAdventure Sagl 
2 CSO, QBT Sagl - Professor, UCM Higher Education Institution - Head of R&D ScienceAdventure Sagl  
3 R&D, QBT Sagl 



to develop models that can help evaluate the possible effects on populations, following the spread of a 

particular microorganism, and can consequently provide the necessary tools to control and predict the 

spread of infectious diseases. These analyzes they also allow us to understand which are the best treatment 

strategies and make important choices regarding immunization programs (vaccinations, therapies, 

prevention, control programs) and the distribution of monetary and technical resources. 

A mathematical treatment is therefore appropriate and necessary, if the dynamics of these events require a 

quantitative analysis of the phenomenon, especially when, as in these cases, the agents causing the 

epidemics can be of the most varied types. 

A crucial problem in defining such dynamics models of infectious diseases is the mathematical representation 

of the transmission mechanism of the infection. There is talk of an epidemic when the recurrence of the 

disease reaches times and proportions that are beyond normal expectations, up to exceeding a threshold 

point, or a critical value indicating the passage from a contagion situation restricted, to a large-scale diffusion. 

(Beretta & Takeuchi, 1995) (Gray, Greenhalgh, Hu, Mao, & Pan, 2011) (Xiao & Ruan, 2007) 

Many network phenomena are well modeled as spreads of epidemics through a network. Prominent 

examples include the spread of worms and email viruses, and, more generally, faults. The spread of 

information can also often be modeled as the spread of anepidemic. An epidemic spreads along the 

underlying network topology from an initial set of infected nodes tosusceptible nodes. 

In many cases infected nodes can be cured, reverting back to being susceptible and possibly being reinfected. 

It is imperative, then to understand how the topology affects the spread of an epidemic, in other words how 

the topology either impedes or facilitates its spread and maintenance.  

(Arino & Van den Driessche, 2003) (Colizza & Vespignani, 2008) (Iwami, Takeuchi, & Liu, 2007) (Zhou, Fu, & 

Wang, 2005) 

 

‘Incidence’ data 
It is quite difficult to understand the impact of an epidemic: it is possible to measure the number of infected 

cases obtained through a diagnostic test. Or observe how many of the people who died in a certain period 

are positive for the same type of test. Both methods are sensitive to measurement errors, in particular 

thinking of a virus that has a high lethality mainly among the elderly. It becomes complex to understand what 

to attribute the reason for the death, besides the two dynamics as well as being very noisy in the measure, 

flow over different time horizons. 

One solution, which is the one used in this work, is to compare the number of deaths in two different periods, 

the first when you imagine that the epidemic did not run (for example the first three months of 2019) and 

those during a period in which we assume that the epidemic is taking place (the first three months of 2020). 

It is a question of comparing the number of deaths without specifying what they depend on. If we observe a 

substantial difference in the two measures, then we are probably observing an epidemic in action 

We have observed a distinctive geographical distribution by measuring the difference between the number 

of deaths in the first three months of this year compared to the same period in 2019. We call ‘incidence’ the 

difference in the number of deaths divided by the number of inhabitants for each municipality involved in 

the survey.  

  



 

The graph shows a distribution with some outliers (see Figure 1) 

 

Figure 1. The distribution of incidence for municipality (tot. 1688) 

We have associated municipality to the region to which it belongs. The result is really difficult to understand, 

albeit confirmed by the measures regarding the spread of the pandemic: the incidence is much higher in 

some regions, in particular in the northern regions (see Figure 2). 

 

Figure 2. The distribution of the average of incidence for regions 



We ask ourselves, why have many more people died in proportion to the population density in Lombardy 

than in Lazio, or in Campania? We have already shown with simulation models based on agents how some 

socio-cultural characteristics of northern Italy have been able to trigger dynamics favorable to contagion. 

(Cecconi & Barazzetti, 2020) In this work we show how topological factors exist, which together with the 

dynamics related to commuting; it can explain the distribution of the incidence. 

Municipality network 

We calculated the distance between all the municipalities involved in the survey, obtaining a distance matrix. 

Two municipalities are to be considered connected to each other if the distance is less than a threshold, 

θ=0.428 (about 3 hours by car). The resulting network has the following topological properties 

 

 Value Notes 

Number of nodes 

 

1,688 The municipality 

Number of links 

 

48,370 The links are undirected 

Average degree 

 

0.27 

 

 

Clustering coeff. 0.96 The probability that two of my 

neighbors are close to each other 

Diameter 

 

21  

Table 1. The topological properties of municipality network 

 

Figure 3. The municipality network 



Mobility index 

On a network made up of municipalities such as the one just described, it is possible to calculate a mobility 

index using two factors: (1) topological properties of the network and (2) data from Istat concerning the 

amount of work-related commuting, internal and outside the region. 

In particular, the M mobility index for each municipality i is obtained summing two separate indices: 

(a) ��
�, or the average of the number of inhabitants of the municipalities connected to and (b) ��

� , for each 

of them the average the number of inhabitants of their neighbors.  

This is obviously a recursive process, which requires using a fixed number of recursion levels (in our case 2) 

and weighing the coefficients differently (in our case the weight for the second level is 0.1). In details, for 

each municipality i we have latitude and longitude, and we compute the distance between municipality i and 

j by 

��,� = 	
��� − 
���	 + 	
���� − 
����	 

and we build a network, G. We build G putting a link between i and j if ��,� < �. 

��
� is computed as ��

� = 〈��,�〉 where J is the set of  the network neighbors of i on G and w the number of 

inhabitants for each one. The same computation the same calculation occurs on the neighbors of the first 

neighbors of i (i.e. on the set J).  

This result is  (after multiply by scaling factor 0.1),    ��
�. 

 

Results and conclusions 

We have calculated the average of the mobility index M, for each of the regions involved in the survey. We 

then used the data on mobility linked to commuting for each region, thus obtaining a second index, a mobility 

index enriched with data on commuting movement. In Figure 4 and Figure 5 we show the correlation 

between the two indices and the incidence for each region. 

The data clearly show how a correlation exists between these two indices and the incidence, and that 

therefore it can be said that one of the factors that caused such a marked difference between the north and 

south in the impact of the pandemic is to be referred to socio-economic structures. 

In other words, what we find is that there is a correlation between a purely 'structural' property of the 

environment in which the virus moves, and the presence of a greater number of deaths. 

So, since the greatest number of deaths is logically associated with the spread of the epidemic, we can 

associate a structural property such as the number of municipalities and how they are topologically linked to 

each other to the spread. This does not deny that there may be many other factors that justify the greater 

number of deaths in the northern regions. 

But surely the topology of the territory, understood as the number of municipalities and their connectivity, 

plays a role.  

 



 

Figure 4. The correlation between mobility index and incidence 

 

Figure 5. The correlation beetween mobility index weigthed by commuting data and incidence 
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